LINEAR ALGEBRA HOMEWORK

JULY 25, 2023

In today's homework, F is a field.
Exercise 1. Assume $v \in F^{2}$ is a nonzero vector. Let $V=F v=\{\mu v$: $\mu \in F\}$ be a subspace of F^{2}. Prove that

$$
\begin{aligned}
\varphi: F & \longrightarrow V \\
\lambda & \longmapsto \lambda v
\end{aligned}
$$

is a linear bijection, that is, φ is a bijection such that

$$
\varphi\left(\lambda_{1}+\mu \lambda_{2}\right)=\varphi\left(\lambda_{1}\right)+\mu \varphi\left(\lambda_{2}\right)
$$

for any $\mu \in F$ and $\lambda_{1}, \lambda_{2} \in F$.

Exercise 2. Let V be a subspace of F^{n}. Let $f: F^{k} \longrightarrow V$ and $g: F^{\ell} \longrightarrow V$ be two linear bijections. Show that f^{-1} and $f^{-1} g$ are also linear bijections.

Exercise 3. A homogeneous linear system with more variables than equations must have a non-zero solution. Prove this in half a page.

